

Restructuring the DRG system in rehabilitation and psychiatry

Strategic Insights into Swiss Healthcare Tariff Design and **Evaluation**

Samuel Noll SwissDRG AG, Bern

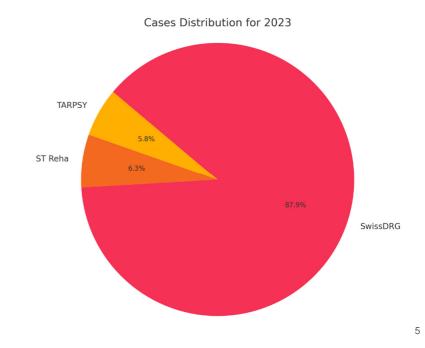
Agenda

- Background: The SwissDRG System
- An In-House Built DRG Development Platform
- Example of a Development Step

2012 SwissDRG⇒ DRGs for acute care Hospitals
 2018 TARPSY ⇒ daily flat rates for psychiatry (PCGs)
 2022 ST Reha ⇒ daily flat rates for rehabilitation (RCGs)

- DRG systems should cover *average* yearly costs of all Swiss hospitals
 ⇒ maximize R² (proportion of cost variance explained by DRG grouping)
- DRG system should make sense in medical terms transparent and comprehensible
- Hospitals primarily reimbursed by DRG-based flat rates
- Reimbursement = DRG cost weight * baserate in CHF
 - ⇒ Baserate negotiations between hospitals and insurance associations

DRG System Adapted Yearly


- New diagnoses and procedures
- Change requests from the healthcare community

SwissDRG System Based on all Hospitals' Patient Data

 Yearly data collection from most Swiss hospitals

Cases per tariff structure

SwissDRG: 1.2 Mio TARPSY: 80'000 ST Reha: 87'000

OPERATIVE PARTITION

(I)

(I)

(I)

(II)

(II)

(III)

(II

Set of Rules as a Hierarchical Decision Tree

- Nodes with If-Then decisions with refined medical logics
- Leafs with DRGs

Agenda

- Background: The SwissDRG System
- An In-House Built DRG Development Platform
- Example of a Development Step

7

Motivation: New Medical Requirements

- Before 2020 SwissDRG Inc. has worked for almost 10 years with standalone Windows based system.
- To facilitate collaboration, cover new needs and gain flexibility to adapt to future needs of the medical development team, SwissDRG developed a tool in-house
- Changes in the DRG system are evaluated immediately within the tool:
 ⇒ integrated...
 - o system development and
 - o calculation with patient data

Example DRG "F98A"

"Endovascular heart valve surgery, with aortocoronary bypass or intensive care complex treatment with > 196 /360 cost points."

Decision Nodes Contain Logical Expressions

"artoconoral bypass or intensive care complex treatment with > 196/360 points"

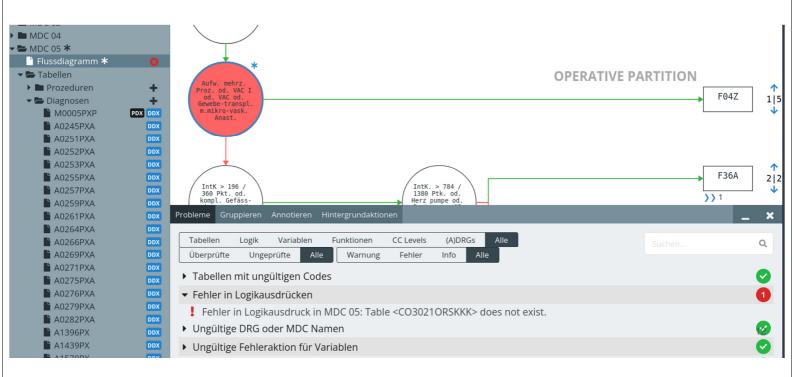
Aortokoronarer Bypass od. IntK > 196 / 360 Pkt.

1 SRG IN TABLE(A02870RA)
2 OR SRG IN TABLES (C02798NO, C02801NO)

SRG = "surgery" = any procedure

Logics can be nested or refer to functions which encapsulate other logic.

PDX = Main diagnosis
SDX = secondary diag.
...


Higher Quality through Immediate Feedback

- A set of validations runs concurrently while editing; e.g.
 - o table with invalid diagnosis codes
 - invalid logic expressions
 - invalid DRG names
- Users can tick off validations and comment on them.

Before: validation only at the end of a development cycle

=> over 1000 warnings, many of them irrelevant

Validations: List Links to Problem Position

Agenda

- Background: The SwissDRG System
- An In-House Built DRG Development Platform
- Example of a Development Step

13

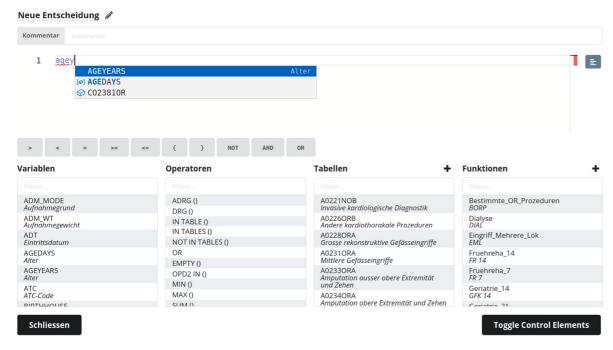
Example Overview

- 1. Extend a rule system by adding a conditional split
- 2. Group the patient data with the changed rule system
- 3. Compare the differences between current and new grouping
- 4. Calculate the new catalog
- 5. Compare the catalog between current and new catalog

Extend a System by Adding a Conditional Split

Start: base DRG F04:

"Elaborate multi-stage procedures or complex vacuum treatment with existing intervention or tissue transplantation with microvascular anastomosis for diseases and disorders of the circulatory system"


Adding the split

insert a new decision node and a new DRG

Red: missing logic, missing DRG name

Editor assists in writing correct logic expressions

The editor suggests existing function or variable or table names.

17

Editor checks syntax and semantics

1 AGEYEARS > 130

▲ 3 1 of 1 problem

Value <130> is invalid for variable <AGEYEARS>. Valid values are: (0, 124)

Check happens while writing logical expressions.

Adding the split logic

Neue Entscheidung 🥒

"age older than 96 (years)"

19

Name the new DRG

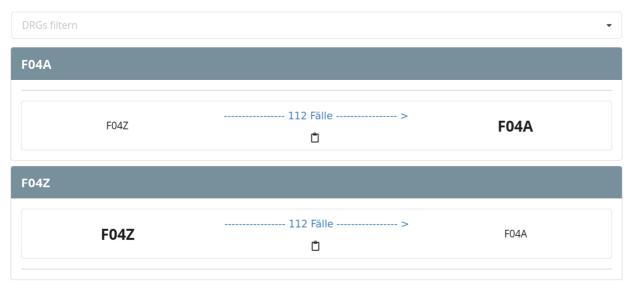
All elements affected by the change are marked.

Changes in Fitness Criteria

Difference in fitness criterion R2 (variance explained by the DRG grouping specified by this changed set of grouping rules)

21

Statistics of the Differences between the two Groupings


Ra- ng	DRG	Fall- anzahl alle	Kosten Mw al- le	Kosten Str alle	Kosten HK alle	Tagesk. MW alle	VWD Mw alle	Diffk. Mw alle	Fall- anzahl inlier	Kosten Mw in- lier	Kosten Str in- lier	Kosten HK in- lier	Tagesk. MW inlier	VWD Mw inlier	VWD Str inlier	VWD HK inlier	Diffk. Mw inlier	O V M V	L- TP	H- TP
0	F04A	0	0	0	0.0%	0	0.00		0	0	0	0.0%	0	0.00	0.00	0.00		0	0	0
5	F04A	112	94000	40670	69.8%	2351	42.29		87	81639	30704	72.7%	2449	34.56	9.78	77.94		V	12	53
5	F04A	112	94000	40670	69.8%	2351	42.29	94000	87	81639	30704	72.7%	2449	34.56	9.78	77.94	81639		12	53
5	F04Z	124	90973	40734	69.1%	2338	41.32		95	79083	30872	71.9%	2424	33.78	10.00	77.15		V	11	52
6	F04Z	12	62713	29971	67.7%	2215	32.25		8	53798	21267	71.7%	2161	26.50	12.13	68.60		A	10	47
1	F04Z	-112	-28260	-10763	-1.4%	-123	-9.07	94000	-87	-25285	-9605	-0.3%	-263	-7.28	2.13	-8.55	81408		-1	-5

Shows statistics of differences in number of patients, cost and length of stay:

- average
- standard deviation

Evaluate shifted patient cases

DRG-Verschiebungen: 112

Which patients "moved" into new DRG "F04A"?

23

Examine individual shifted patients

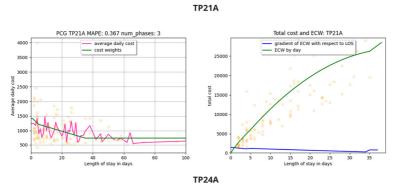
Drill down into database to examine individual shifted patient cases

Catalog: Statistics per DRG

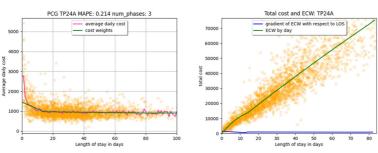
Katalog

Kennza	hlen Kata	alog Grafiken									
PCG	nr_cases	n_cases_tr_out	n_hosp	avg_costs	med_costs	std_costs		DMI	СМІ	r2	BG
Egin	63075	3487	62	25333	18093	26870		1.000	32.945	0.875	768.947
TP21A	135	10	27	17793	13277	15363		1.136	23.140	0.776	873.497
TP21B	6940	501	46	17322	12197	17530		0.967	22.526	0.882	743.472

DMI	СМІ	r2	BG	MAPE	MAE	RMSE	med_R2
1.000	32.945	0.875	768.947	0.215	4688	9499	0.118
1.136	23.140	0.776	873.497	0.367	5098	7302	0.000
0.967	22.526	0.882	743.472	0.202	2959	6016	0.000

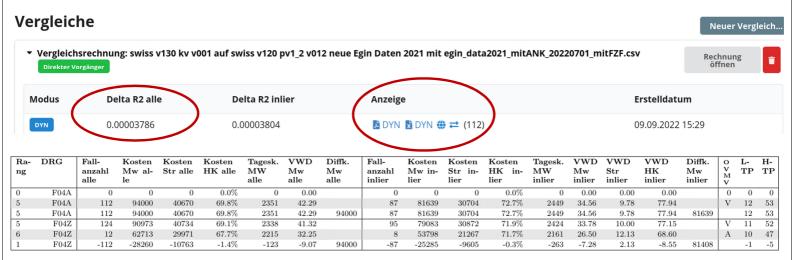

DMI: Day Mix Index CMI: Case Mix Index

Based on the changed rule system, a catalog with new cost-weight was calculated. Using this new catalog, cost and demographic statistics were calculated.


25

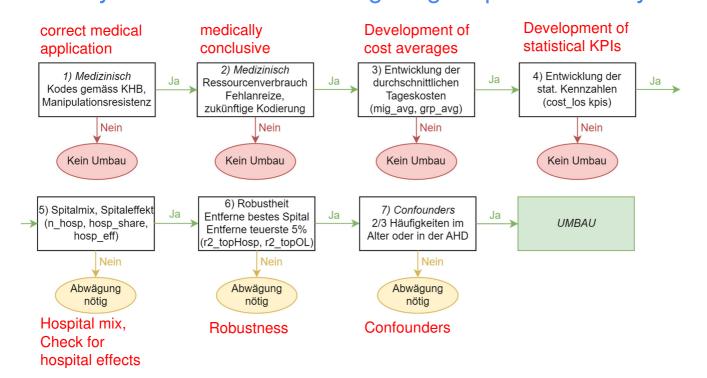
Catalog diagrams

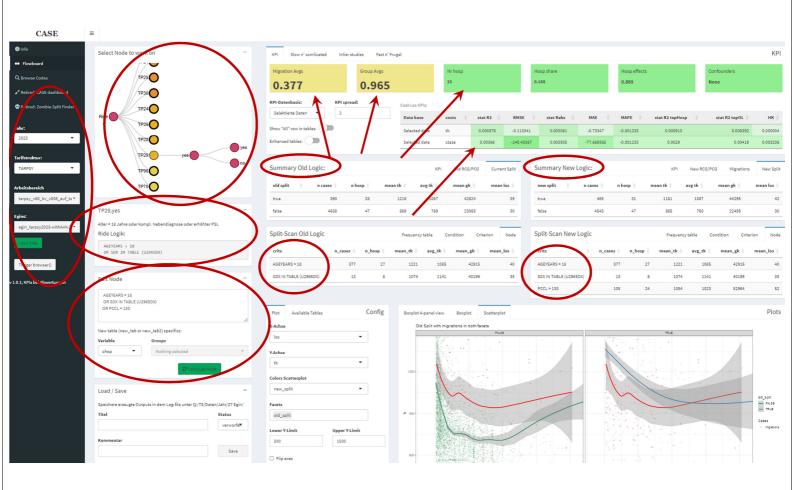
Diagrams show average cost and compensation, given this catalog.


Conclusion

We developed an infrastructure that allows...

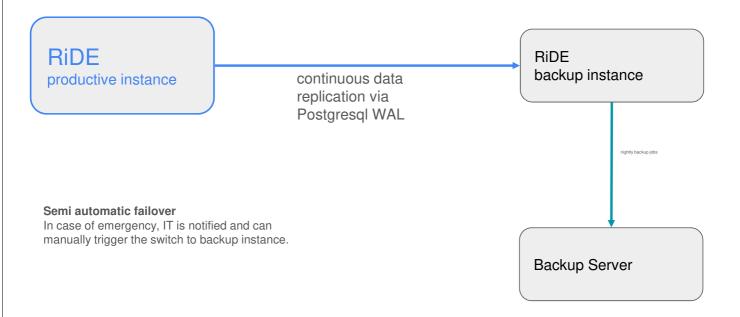
- graphical manipulation of system rules
 AND
 quick simulation of the effects all the way to generating cost weights per
 DRG and calculating case mix indices for all patients.
- quick adaptation of the system, e.g. in case of pandemics
- implementation of new features based on user requirements within 2-4 weeks

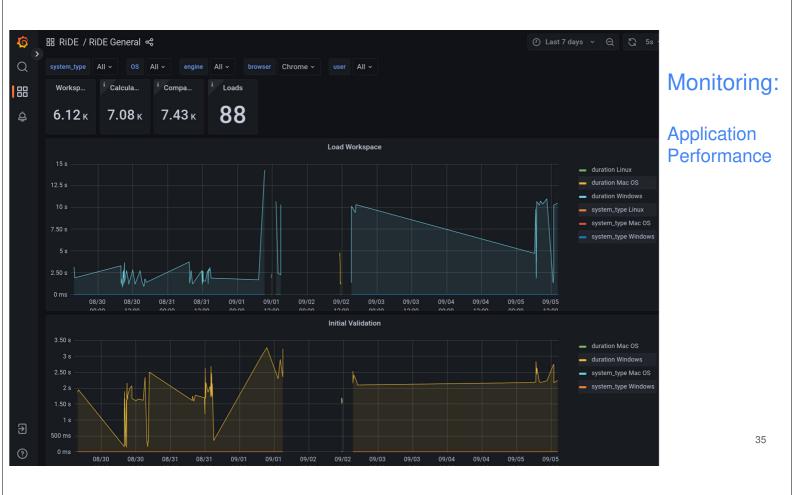

27


Statistics of the Differences between the two Groupings

What is a good split?

Query framework for investigating a split holistically

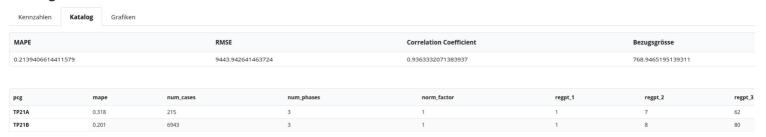



Thank you for your attention!

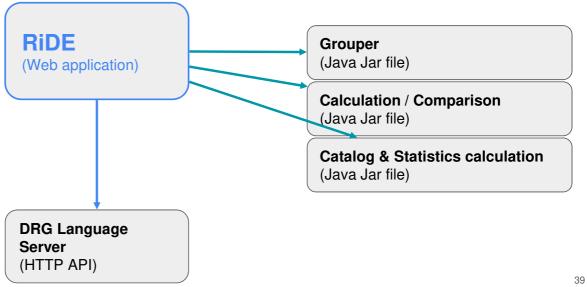
- Since 2012: patients categorized (grouped) into DRGs
- Comprehensive flat rate as an objective: DRG valuation (cost weights) includes operating costs as well as costs for infrastructure
- Reimbursement mechanism:
 Individual baserate x Cost weight (of DRG catalogue) + additional payments
 = payment per hospitalized patient (inpatient case) = flate rate
- Hospital financing mechanism: sum of flat rates (of inpatient cases) + payment for community services

Continuous Mirroring and Backup

Monitoring: Machine Load; Automatic Replication


Group patient set with updated rules, calculate statistics

"Egin": patient data set


Catalog with fitness statistics

Katalog

- Overall fitness statistics (for entire patient set)
- Fitness statistics per DRG

Technology

